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How Car Manufacturers Control Fuel Economy

* Aerodynamics
* Weight reduction
» Same performance and safety for less weight

Managing their respective powertrain system

» Monitoring energy consumed/generated
» Looking for alternative systems
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GM’s Alternative Powertrain Vehicles

Chevrolet Volt (2010) and Bolt (Concept shown in 2015 North American International Auto
Show)
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The Problem!

* Plug-in Hybrid Vehicles (PHEV); Hybrid Vehicles (HV); Electrical
Vehicles (EV)

» Run out of electrical energy in short ranges >PHEV (30-80 km);
EV (max ~300 km)

» Higher charging times
e PHEV, HV, and EV cars need to have better driving ranges
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Goal Statement

* New mechanical and/or electrical framework needed to
improve the driving range for PHEV, HV, and EV cars

» System needs to be self generating (Incorporate sustainable
energy)

» Charge battery modules when vehicle in motion and/or
stationary
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Constraints

Fit within the space limitation of the car
» Any brand or model

Generate enough energy and power to charge the battery

Use sustainable energy source

Work when automobile is stationary and/or moving
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Criteria

1.

2.

3.

4.

Safety
. Risk to the passengers and operators of vehicle
Performance
a. How much energy can we extract?
b. How much weight will it add?
Cost
. Manufacturing complexity
b. Maintenance and warranty
Knowledge
. How well understood is the performance of the system
b. What tools do we need to develop to make system feasible
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Possible Extraction Methods to
Harvest Electrical Energy
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Solar “voltaic” Cells (SVC)

 Photoelectric Effect 2 light energy into electrical energy

n Light — Incident Ray

Current

| Load —
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KERS
FLYWHEEL KERS

COMPONENT DETAILS _;‘;;,.‘

Flywheel module
60,000 rpm max

- CVT module
~ Continuously
variable transmission

> Output gear train
/" Gearings, start clutch

, Rear driveshaft
/ Output torque
/ to rear wheels

S

Hydraulic manifold Assy
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Wind Energy

Transmission/Gears Generator

«  Wind (kinetic) energy is converted to electrical energy
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Feasibility Study

Current power and efficiency of current PHEV, HV, and EV
» Chevrolet Volt: 111kW (149 bhp) @ 80 km range
» Battery Size: 17.1 kWh
Establish our goal for range improvement
» + 30% range = 104km range = + 4.032 kWh of Energy Harvesting
» + 50% range = 120km range = + 7.182 kWh of Energy Harvesting
Determine energy harvesting capability
» What is the maximum energy we can theoretically extract

Determine energy harvesting efficiency

» Mechanical losses (friction, weight increase)
» Thermodynamic losses (entropy)

» Aerodynamic losses (increase in drag)

After all of this, determine if we can ACTUALLY meet our goal of
improved range
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Vertical vs Horizontal Axis Wind Turbine
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Lift vs Drag Driven turbine
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Efficiency of Different Type of Turbines
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General Theory & Key Concepts
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General Theory & Key Concept
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General Theory & Key Concepts
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General Theory & Key Concepts

e Airfoil used

» NREL and NACA are most common airfoil used to design the
wind turbine
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Blade Element Momentum (BEM) Theory

Assumptions
* Momentum Theory

»
»

»

»

»
»

Blades operate without frictional drag

A slipstream that is well defined separates the flow passing
through the rotor disc from outside disc

The static pressure in and out of the slipstream far ahead of
and behind the rotor are equal to the undisturbed free-stream
static pressure (p1 = p3)

Thrust loading is uniform over the rotor disc
No rotation is imparted to the flow by the disc
Based on state flow
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BEM Theory Assumptions

e Blade Element

» There is no interference between successive blade elements
along the blade

» Forces acting on the blade element are solely due to the lift
and drag characteristics of the sectional profile of a blade
element
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BEM Theory
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BEM — 2D Element
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BEM — 2D Forces
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BEM a & a’ Iteration
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Computational Fluid Dynamics
(CFD) - ANSYS
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Gertz Experimental Model

e Airfoil Used: N83X series
e Number of Blades: 3

 Designed Tip Speed Ratio
(TSR): 5.4

 Rotational Speed: 200 rpm
* Radius: 1.65 m

* Temperature: 300 K
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NREL S83X series

S833 Airfoil S834 Airfoil
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Gertz Experimental Model

350 A~ 20.0 q
300 4 . 18.0 1
16.0 .
E 200 A 4 @ 120
% ‘ . ? 100
£ 150 % ¢
° 2 8o
: o :
0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1 0 0.2 0.4 0.6 08 1 1.2
Radius (r/R) Radius (r/R)
Gertz chord and pitch varying throughout the blade length
W UNIVERSITY OF
COMPUTATIONAL FLUID DYNAMICS (CFD) & ANSYS 2 WATERLOO

@ 37



CFD Fluent Theory Model Assumption

1. Fluid is Newtonian
2. There is only one phase present

3. The problem domain throughout the analysis does not
change

4. The user has to define 2 set of parameter on what type
of fluid flow
1.  Fluid flow is assumed turbulent
2. The fluid is assumed incompressible
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CFD Fluent Theory Model Generation

* Reynolds (Ensemble) Average
* Filtered Navier-Stokes Equation
* Hybrid RANS-LES Formulation

* Bossinesq Approach vs Reynolds Stress Transport
Models
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Fluent Geometry
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Fluent Mesh
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Boundary condition
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Boundary Condition
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Turbulence Model

e Transitional SST

» Specially created to monitor airfoil flow

» An upgrade version of k-w SST (k-omega Shear Stress
Transport) models with additional 2 transport equations
* k-w SST model is more accurate and reliable for a wider class of flows

— Adverse pressure gradient flows
— Airfoils
— Transonic shock waves
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Solution
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Solution

1.73e+01

1.65e+01
1.56e+01
1.47e+01
1.39e+01
1.30e+01
1.21e+01
1.13e+01
1.04e+01
9.52e+00
8.66e+00
7.79e+00
6.93e+00
6.06e+00
5.19e+00
4.33e+00
3.46e+00
2.60e+00
1.73e+00
8.66e-01

0.00e+00

M———CTE 16400
8.926+00
8.32e+00

Contours of Velocity Magnitude (m/s)

Aug 28, 2015
ANSYS Fluent 15.0 (2d, dp, pbns, trans-sst)

Contours of Velocity Magnitude (m/s)

Aug 28, 2015

ANSYS Fluent 15.0 (2d, dp, pbns, trans-sst)

COoMPUTATIONAL FLUID DYNAMICS (CFD) & ANSYS

Eg}

UNIVERSITY OF

WATERLOO

46



Cp (Coefficient of Power) vs TSR (Tip Speed Ratio)
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Conclusion

* The model has less percentage error for TSR 5-8 when
compared to Gertz’s Model
» Cp of 0.42 is achievable on this airfoil

* To get better results
» Better and more structured mesh is needed
» More stricter convergence method is needed
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Future Plans

 Adapt this model for the turbine that is going to be used
in the car

e Check if the size is feasible

e Conduct Lap time simulation to see if the energy is
generated
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