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Requirement from CAFE 
in the next decade  

Extrapolation from the 
current mileage 
achieved 

Comparing Extrapolation of the current achieved mileage, to the estimated mileage proposed by CAFE  



How Car  Manufacturers  Control  Fuel  Economy

• Aerodynamics 
• Weight reduction 

Same performance and safety for less weight  
• Managing their respective powertrain system 

Monitoring energy consumed/generated
Looking for alternative systems

INTRODUCTION
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GM’s Alternative Powertrain Vehicles 

INTRODUCTION
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Chevrolet Volt (2010) and Bolt (Concept shown in 2015 North American International Auto 
Show)

[3] [3]



The Problem!

• Plug-in Hybrid Vehicles (PHEV); Hybrid Vehicles (HV); Electrical 
Vehicles (EV)

Run out of electrical energy in short ranges àPHEV (30-80 km); 
EV (max ~300 km) 
Higher charging times 

• PHEV, HV, and EV cars need to have better driving ranges

INTRODUCTION
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Goal  Statement

• New mechanical and/or electrical framework needed to 
improve the driving range for PHEV, HV, and EV cars

System needs to be self generating (Incorporate sustainable 
energy)
Charge battery modules when vehicle in motion and/or 
stationary

INTRODUCTION
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Constraints 

• Fit within the space limitation of the car
Any brand or model 

• Generate enough energy and power to charge the battery
• Use sustainable energy source
• Work when automobile is stationary and/or moving 

INTRODUCTION
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Criteria
1. Safety 

a. Risk to the passengers and operators of vehicle
2. Performance

a. How much energy can we extract?
b. How much weight will it add?

3. Cost
a. Manufacturing complexity
b. Maintenance and warranty

4. Knowledge
a. How well understood is the performance of the system
b. What tools do we need to develop to make system feasible

INTRODUCTION
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Possible Extraction Methods to 
Harvest Electrical Energy
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POSSIBLE EXTRACTION METHODS TO HARVEST ELECTRICAL ENERGY

Exhaust 

Pt Pt
Catalyst Catalyst

Hydrogen 
(H2) gas 
from 
reservoir 

Oxygen air 
(O2) intake 
from the air

Proton Exchange 
Membrane (PEM)H2 à 2H+ + 2e-

½O2 + 2H+ + 2e- à H2O 

Hydrogen 
Fuel  Cel l
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Solar  “voltaic” Cel ls  (SVC)
• Photoelectric Effect à light energy into electrical energy
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Light – Incident Rayp n

Current 

Load

e-e-

POSSIBLE EXTRACTION METHODS TO HARVEST ELECTRICAL ENERGY



KERS

POSSIBLE EXTRACTION METHODS TO HARVEST ELECTRICAL ENERGY
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Generator +

-

Transmission/Gears

Wind Energy

• Wind (kinetic) energy is converted to electrical energy

16
FOUR POSSIBLE EXTRACTION METHODS TO HARVEST ELECTRICAL ENERGY
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All four designs evaluated based on the criteria given above

Solutions: → Hydrogen Fuel 
Cells

Solar "Voltaic" 
Cells KERS Wind

Criteria ↓ Weight Weight (%) # % # % # % # %

Safety 10 34% 5 17% 10 34% 8 28% 10 34%

Performance 8 28% 6.5 22% 4 14% 7 24% 6.5 22%

Cost 5 17% 2.5 9% 3 10% 4 14% 5 17%

Knowledge Behind the 
Concept 6 21% 3 10% 4.5 16% 6 21% 6 21%

Total: → 29 100% 17 59% 21.5 74% 25 86% 27.5 95%

1 -> Lowest Concern                         10 -> Highest Concern



Feasibi l i ty Study
• Current power and efficiency of current PHEV, HV, and EV

Chevrolet Volt: 111kW (149 bhp) @ 80 km range
Battery Size: 17.1 kWh

• Establish our goal for range improvement
+ 30% range = 104km range à + 4.032 kWh of Energy Harvesting
+ 50% range = 120km range à + 7.182 kWh of Energy Harvesting

• Determine energy harvesting capability
What is the maximum energy we can theoretically extract

• Determine energy harvesting efficiency
Mechanical losses (friction, weight increase)
Thermodynamic losses (entropy)
Aerodynamic losses (increase in drag)

• After all of this, determine if we can ACTUALLY meet our goal of 
improved range

INTRODUCTION
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Literature Review 
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Vert ica l  vs  Hor izontal  Ax is  Wind Turbine

LITERATURE REVIEW
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VAWT HAWT



Lift  vs  Drag Driven turbine 

LITERATURE REVIEW
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Eff ic iency of  Different Type of  Turbines

LITERATURE REVIEW
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General  Theory & Key Concepts

LITERATURE REVIEW
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2D – Airfoil Diagram 
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2D – Airfoil FBD, in an ideal situation with 
now skin drag
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General  Theory & Key Concepts

LITERATURE REVIEW
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General  Theory & Key Concepts

• Airfoil used
NREL and NACA are most common airfoil used to design the 
wind turbine

LITERATURE REVIEW
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Blade E lement Momentum (BEM) Theory  
Assumptions  
• Momentum Theory

Blades operate without frictional drag 
A slipstream that is well defined separates the flow passing 
through the rotor disc from outside disc
The static pressure in and out of the slipstream far ahead of 
and behind the rotor are equal to the undisturbed free-stream 
static pressure (p1 = p3) 
Thrust loading is uniform over the rotor disc 
No rotation is imparted to the flow by the disc 
Based on state flow 

LITERATURE REVIEW
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BEM Theory Assumptions 

• Blade Element
There is no interference between successive blade elements 
along the blade 
Forces acting on the blade element are solely due to the lift 
and drag characteristics of the sectional profile of a blade 
element 

LITERATURE REVIEW
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BEM Theory

LITERATURE REVIEW
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BEM – 2D Element

LITERATURE REVIEW
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BEM – 2D Element

LITERATURE REVIEW
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BEM – 2D Forces

LITERATURE REVIEW
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BEM a & a’  Iteration 

LITERATURE REVIEW
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Computational Fluid Dynamics 
(CFD) - ANSYS
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Gertz Experimental  Model

• Airfoil Used: N83X series
• Number of Blades: 3
• Designed Tip Speed Ratio 

(TSR): 5.4
• Rotational Speed: 200 rpm
• Radius: 1.65 m
• Temperature: 300 K

COMPUTATIONAL FLUID DYNAMICS (CFD) & ANSYS
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NREL S83X series

COMPUTATIONAL FLUID DYNAMICS (CFD) & ANSYS
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Gertz Experimental  Model

COMPUTATIONAL FLUID DYNAMICS (CFD) & ANSYS
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Gertz chord and pitch varying throughout the blade length



CFD Fluent Theory Model  Assumption

1. Fluid is Newtonian
2. There is only one phase present 
3. The problem domain throughout the analysis does not 

change
4. The user has to define 2 set of parameter on what type 

of fluid flow
1. Fluid flow is assumed turbulent
2. The  fluid is assumed incompressible

COMPUTATIONAL FLUID DYNAMICS (CFD) & ANSYS
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CFD Fluent Theory Model  Generation 

• Reynolds (Ensemble) Average 
• Filtered Navier-Stokes Equation 
• Hybrid RANS-LES Formulation 
• Bossinesq Approach vs Reynolds Stress Transport 

Models

COMPUTATIONAL FLUID DYNAMICS (CFD) & ANSYS
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Fluent Geometry 

COMPUTATIONAL FLUID DYNAMICS (CFD) & ANSYS
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Fluent Mesh

COMPUTATIONAL FLUID DYNAMICS (CFD) & ANSYS
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Boundary condit ion 

COMPUTATIONAL FLUID DYNAMICS (CFD) & ANSYS
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Boundary Condit ion 

COMPUTATIONAL FLUID DYNAMICS (CFD) & ANSYS
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Turbulence Model

• Transitional SST
Specially created to monitor airfoil flow
An upgrade version of k-w SST (k-omega Shear Stress 
Transport) models with additional 2 transport equations 
• k-w SST model is more accurate and reliable for a wider class of flows

– Adverse pressure gradient flows
– Airfoils  
– Transonic shock waves

COMPUTATIONAL FLUID DYNAMICS (CFD) & ANSYS
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Solution 

COMPUTATIONAL FLUID DYNAMICS (CFD) & ANSYS
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Solution

COMPUTATIONAL FLUID DYNAMICS (CFD) & ANSYS
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COMPUTATIONAL FLUID DYNAMICS (CFD) & ANSYS
47
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Conclusion 
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Conclusion 

• The model has less percentage error for TSR 5-8 when 
compared to Gertz’s Model 

Cp of 0.42 is achievable on this airfoil  

• To get better results 
Better and more structured mesh is needed 
More stricter convergence method is needed 

CONCLUSION
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Future Plans
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Future Plans

• Adapt this model for the turbine that is going to be used 
in the car 

• Check if the size is feasible
• Conduct Lap time simulation to see if the energy is 

generated  

FUTURE PLANS
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Questions?
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• Hydrogen Fuel Cells – PEM
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